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The problem of the time-optimal steering of a point mass onto the surface of a sphere at zero velocity, by a control force of 
bounded magnitude is investigated. It is assumed that the surface is penetrable and that the point may “land” on the sphere 
either from the outside or from the inside. An optimal control, in the open-loop and feedback form of trajectories the optimal 
time and the Bellman function are constructed using Pontrya’gin’s maximum principle. The multidimensional boundary-value 
problem is reduced, by introducing self-similar variables, to the numerical solution of an algebraic equation of degree four and 
a transcendental equation. It is shown that the boundary-value problem degenerates when the optimal trajectory is nearly linear; 
a solution of the synthesis problem is constructed in the degenerate case. The efficacy of the approach proposed here is illustrated 
by specific examples in which families of trajectories are computed, and by an analysis of control regimes. 0 2002 Elsevier Science 
Ltd. All rights reserved. 

1. FORMULATION OF THE PROBLEM 

Consider the motion of a point mass of constant mass m in a space of arbitrary dimensions R”, n 3 1, 
driven by a force F of bounded magnitude [l-3]: 

X=V, mti= F, x(0)=x0, v(O)=u’, IFI=s F, (1-l) 

The problem is to steer the point in a time-optimal manner to a sphere S:, of arbitrary radius r 2 0 at 
zero velocity (a “soft landing”): 

lx(t,)-x0 l=r, u(r,)=O, f, +rnp (1.2) 

No restrictions are imposed on the possible positions of the point x: it may be located either 
inside or outside the sphere, and the trajectory may intersect the sphere SF. The situation in which 
the sphere is “impenetrable” is also of considerable interest, and requires separate consideration. 
We mention that for a certain set of initial data the solution of problem (l.l), (1.2) also yields a solution 
of the problem with the indicated state constraints (a “soft landing” from outside or inside). The 
case r = 0 is degenerate and corresponds to steering the point to a geometric point x(+) = x0 at zero 
velocity; a complete solution of this time-optimal problem has already been constructed [3]. We will 
therefore assume from now on that r > 0. 

We note that the problem of the most rapid steering of a point to a cylindrical surface S,” x R”+, 
m -z n, reduces to problem (l.l), (1.2) when n = m. 

The formulation of the control problem (l.l), (1.2) and its complete solution in the open-loop and 
feedback form are of definite interest for applications to the mechanics of flight. 

The time-optimal control problem contains 3n + 3 parameters: the n-vectorsx”,xo, no and the scalars 
m, Fo, r. By transferrin the coordinate system x, u to the point x = x0, u = 0, introducing r as the unit 
of length and (mr/Fo) 18 2 as the unit of time, we obtain equations of type (l.l), (1.2) in which x0 = 0, 
r = 1, F. =l, m = 1. In dimensionless variables, the control problem contains 2n parameters: the 
n-vectors x0 and v”, which vary in infinite intervals. 

We will write the necessary conditions for the optimal@ of the control u = F/F0 as a Cauchy problem 
for the Hamilton-Jacobi-Bellman equation [l] 
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(T;, lJ)-IT,“I=-1, u’=-T,‘)T,“I-’ 
(1.3) 

T=T(x, v)>O, x-is,", u #O; T=O, XES,". v =0 

where T is the Bellman function and u* is an optimal control in the feedback form. The unknown 
T(x, u) is constructed by the method of characteristics, which is algorithmically equivalent to solving 
the boundary-value problem of Pontryagin’s maximum principle [l]. It follows from the central symmetry 
property that if Iz 3 2 (the case n = 1 is singular and needs special consideration), the unknown function 
T is defined by three self-similar variables 1, h and c, and Cauchy problem (1.3) becomes 

T,‘cll+~~h2-(T,‘2+2T,‘~~clh+~212)~=-], T=T(/, h, c) 
(1.4) 

l=lxl, h=Ivl, c=(x, u); T>O, I;tl, h#O; T=O. I=l, h=O 

This means that the time-optimal problem for n 3 2 is equivalent to the case n = 2, that is, to the 
two-dimensional problem. The plane in which the optimally controlled motion takes place is defined 
by the two non-zero vectors x and u. Obviously, the case c = k/h, including also the case x = 0 and/or 
u = 0, leads to degeneration of the one-dimensional motion. The property (1.4) of equivalence to the 
two-dimensional problem is useful for constructing a solution of the initial multidimensional problem 
(rz > 2) of the time-optimal “soft landing” on a sphere. This property also manifests itself when the 
necessaty optimality conditions are applied in the form of Pontryagin’s maximum principle [3]. 

Note that the control problem has a solution for arbitra7 values of the vectorsx’ and u’. As admissible 
control one can take a constant control uo) = -v”/ho, h = 1 v” 1 in the first interval, which leads to 
a complete halt at time f(i) = ho at the pointx(t(,)) = x (‘I, where x(*) = x0 + Ihu”ho. One can then move 
from the rest point along a straight line through a selected point of the sphere, say the closest point, 
x(2) = x(‘)/$‘), /W = ]#) ( ; the distance between the points x(i) and xc2) is Al2 = ]I(‘) - 1 I. Movement 
along that line requires a time t2 = 2A12’h to reach the sphere at the point ~(~1 with zero velocity, that 
is, we have an upper bound t’ for tp 

I( 
K 

ffd=ho+2 

Computations (see Section 6) indicate that, for initial data that lead to trajectories with re-entry, the 
above control mode is approximately realized. 

2. THE BOUNDARY-VALUE PROBLEM OF THE MAXIMUM PRINCIPLE 

Let us apply the necessary conditions for optimal@ of the control u, in the form of the maximum 
principle [3], to the initial problem. Introducing the n-vectors p and q of variables conjugate to x and 
u, respectively, and proceeding in the usual way, we obtain expressions for the optimal control U* and 
the following boundary-value problem [3] 

u’=qlql-‘, q=?J-pvt/t,, IqI=(l-2crptlt,+pWt,)V 

x = u, ti=u *, x(0)=x0, v(O)= u”, Ix(r,)l= I, u(t,)=O 

pa0, (alsl, v=pIp(-‘, p=const, O=(rl, v) 

(2.1) 

where rl and v are unit n-vectors and cr is their scalar product. Note that the Hamiltonian is constant 
along the trajectories of system (2.1) and is equal to JTJ - uv] b 0. The unknown scalar parameters 
u, o and tf and the vectors TJ and v must be determined from the boundary (final) conditions and the 
transversality conditions [l]. 

To that end, we integrate the equations for v andx according to (2.1) 
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u(t)=uO +V,(r)q+pV,(r)v 

(2.2) 
X(f) = x0 +u”l + X,(f)rj + pxv(r)v 

The scalar functions V&(t) and X,,“(t) also depend on the unknown parameters CL, o and t/. Taking 
the constraints on ?f, u and Q into consideration, we express these functions as follows [3]: 

V(t) = arsh 
ptlt, -0 

J7 
(2.3) 

[ 

t=f 

X”(1) = V,(t)t + ~~~~,l,+3~)lq(r)1+~~302-l)V(T) 
2P 1 t=O 

Substituting formulae (2.3) into (2.2), we obtain the required functions oft and of the vectors .rl and 
v, with fr, p and cr occurring as unknowns. Using the appropriate final conditions for u(t) and the 
transversal@ conditions of the maximum principle [l] forx(t) at t = +, we obtain a system of 2n equations 
containing the unknown vector x(tf> 

X,(r,)n + llX,(t,)v = -x0 -+ +x$) (2.4) 

pxctf I= v, p2 = 1 @=+I, x(tf)=pv) 

The parameter p occurring in the transversal@ condition has the meaning of a reduced Lagrange 
multiplier and takes discrete values. Eliminatingx+) and CT, we obtain a closed system of equations in 
r~, v and f_, p; the parameter l3 is also to be determined. Computing the roots and investigating them 
for arbitrary values of the vectors V’ andx’ present a major difficulty in solving the initial optimal control 
problem. To overcome this difficulty, we use the structural properties of the coefficients V,,&) and 
X,.,Jr_) as functions of the parameters fr, n and o and reduce system (2.4) to the form 

(2.5) 

b = V(t)/:=b’ = I”((l.l--_++(I -2l.lo+l.lz)~)l(l-6)) 

The rest of the solution of system (2.5) is analogous to the procedure used in the steering of a 
point mass to the origin x(tf> = 0 at zero velocity U(Q) = 0 [3]. The essential difference between 
this case and that considered is the presence of the term l3v in the formula for x in (2.5). One should 
also note one property of importance for further analysis - the fact that the coefficients a, ,, and b, ,, 
are independent of the unknown ff. In addition, in the general case one has strict inequalities p > b, 
1 o 1 c 1; the cases in which these are equalities are critical, requiring special investigation and an accurate 
limiting approach (see below). 
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3. A NUMERICAL-ANALYTICAL SOLUTION OF 
THE BOUNDARY-VALUE PROBLEM 

The system of transcendental equations (2.5) will be solved by applying elementary algebraic transfor- 
mations and reducing the system to three equations for ff, u and cr. The reduction may be achieved in 
different ways [3]. One of them is to solve a linear system with block-diagonal matrix for 11 and v. This 
operation is fairly simple, thou 

Q 
h rather laborious. Thus, suppose the vectors 11. and v* are defined as 

linear functions of the vectorsx and u” by a matrix with block-diagonal structure. One can then derive 
three relations for the unknowns ff, p, cs: q*2 = 1, Vet = 1, (TJ’, v*) = cr. After determining the roots of 
this system (taking into account the two possibilities p = & l), +, pi and oi, one chooses the optimum 
root 

Ifi + min, ffi > 0, 
i 

pi >O, 1 Oi I< 1 

and substitutes it into the expressions obtained for VI*, v*, which are used to construct the control and 
trajectories, see (2.1) and (2.2). 

However, this approach is tedious. Therefore, at the first step of the solution of system (2.5) using 
elementary transformations, we also write down the three equations for ff, u and cr in another form 

l2 - I = 2t$(ou, + p0,) + +a;: + 2ucru,a, + u2a,2) 

h2 = r;(b,2 +2pob,,b, + p2b,2) I r;H2(p, a) 
(3.1) 

c = @r/Mb,, + pb,) + r;(a,b,, + I.lou,b, + pm,b,, + p2u,bv) 

l=IxOI, h=JuOl, c=(xO, VO) 

For convenience, by analogy with (1.4), we have introduced in (3.1) scalar parameters 1, h and c with 
an intuitive mechanical meaning. Recall that the n-dimensional system (n > 2) was again equivalent 
to a two-dimensional system (n = 2), which is conveniently represented in the plane. To avoid 
misunderstandings, we point out that when II = 2 the phase space X, u is four-dimensional. We may 
assume without loss of generality that one of the quantities .x! and xi is zero. 

Our main attention will now be given to finding the roots of system (3.1) of transcendental equations 
in tf, p and o and analysing them as functions of the known parameters 1, h and c, which vary in infinite 
intervals I, h > 0, 1 c 1 < 00. The equations are transcendental because of the presence of power and 
logarithmic functions, see (2.5). This is what causes the major computational difficulties, since when 
computations are carried out the required quantities vary in power and logarithmic scales. In addition, 
the difficulties are aggravated when the initial multidimensional problem is degenerate, that is, when 
the optimum motion is nearly linear (see below and [3]). 

Thus, let us consider the system of equations (3.1) and reduce its order by eliminating the unknown 
+ > 0. This is conveniently done by using the second relation, which yields a unique expression for 
tf in terms of u and CT 

$=h/H(C(, (T), h, H>O (3.2) 

The function His defined according to (3.1). After substituting (3.2) into the first and third equations 
of (3.1), we obtain a system of equations in the two unknowns lo and cr. 

We introduce a new variable o by the formula 

Then the radicand in the definition of a in (2.5) becomes 

I -2po+p2 = 
( 

j.l(o+l)+l-co 2 

w-l 1 

(3.3) 

(3.4) 

Next, since o s 1, it follows from (3.3) that pw 3 o - 1. Since u > 0, it follows that p(o + 1) > e.r - 1. 
Consequently, the numerator of the fraction in (3.4) takes positive values. On the other hand, o 2 -1, 
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and by (3.3) we have o(w - (u + 1)) 3 0. If w > 0, we obtain o > u + 1, which, since u > 0, implies 
o > 1. Thus, if o > 0, the denominator of the fraction in (3.4) is positive. Then, by (3.4) and the last 
row in (2.9, we obtain 

a=j.l(O+I)/(W-I)-_, b=lnw (3.5) 

Formula (3.3) enabled us to convert the radical defining the value of a into an expression which is a 
linear function of u and a fractional-linear function of o. At the same time, we have been able to replace 
the argument of the natural logarithm, which was a function of the unknowns o and u, by o -which is 
quite unexpected. Unfortunately, attempts to find a simple relation between the behaviour of the 
parameter o and the phase variables have proved unsuccessful. 

By substituting expression (3.2) and making the change of variable (3.3) we convert the first of 
equations (3.1) into a fourth-degree equation in the unknown u. In view of their complexity, the 
coefficients of this polynomial, which depend only on o, 1, c, h and p, were constructed by computer 
algebra in the form of program fragments in C+ + language. When a numerical simulation was carried 
out, it transpired that at certain values of these four quantities the roots of the polynomial cannot be 
determined with satisfactory accuracy, owing to round-off errors. The analysis and transformation of 
the coefficients were greatly hindered by their cumbersome structure. It turned out, however, that there 
is a comparatively simple change of variables which not only enables the whole expression to be simplified 
considerably but also enables one to reduce the influence of computation errors. 

Now let us consider negative values of the auxiliary variable o. Then the denominator of the fraction 
in (3.4) is negative and the last row in (2.5) gives the following expression for the parameter b instead 
of (3.5) 

b=In((CL-w+l)/(Clo-o+l)) 

We introduce a new variable s, expressed in terms of u and w as follows: 

s_ u-o+1 
uo-o+l (3.6) 

Introduction of the unknown s enables us to establish an interesting fact. If o is eliminated by using 
formulae (3.6) and substituted into the right-hand side of (3.3), the result is 

o= 
s2 -2su-1 

(s-1))2 

which is identical with (3.3) except that s has replaced o. Consequently, all the relations obtained above 
remain valid with s replacing w. In particular, in this case b = In s, where s > 1. Hence it follows that 
we need consider only values of w > 1. 

Using formula (3.6) one can express u in terms of s and o and henceforth use it regardless of the 
sign of w. Indeed 

so+l-o-s 
cc= so-1 

Substitution of this expression into Eq. (3.1) produces a fourth-degree polynomial ins. Unfortunately, 
the coefficients are still very cumbersome, but they are nevertheless much more compact than in the 
case of the polynomial in u, and, above all, they do not produce the same computational difficulties 
(except for cases in which o = 1, see below). 

The computations were carried out according to the following scheme. As initial data we used the 
quantities I, c and h. At the first step the third equation of (3.1) was considered as the definition of a 
certain function c*(1, h, w, /3, s(Z, h, co, p)). Since 1 and h are given and /3 = + 1, c* (0) was actually 
constructed only for l3 = 1 and p = -1. The values of s were computed by Cardano’s formulae as the 
roots of the polynomial resulting from the first equation of (3.1). As a result, up to four branches were 
obtained for each p on the graph of C* (0). Now, based on the form of the graph, the branches were 
determined, as were the necessary ranges of values of o containing the desired roots of the equation 
c*(w) = c. This equation was solved numerically by bisections. If computations with Cardano’s formulae 
are considered as an elementary operation, one in fact has to solve only one transcendental algebraic 
equation, in one unknown o. This procedure was carried out for each root of each of the branches, 
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whose existence was established at the previous step. Finally, the solution corresponding to the least 
duration of motion ff was chosen. 

For all the examples considered, the larger the value of o, the larger was the duration of the motion, 
but it is difficult to prove this analytically. In addition, when w 9 1, each of the branches is always a 
monotone function. These facts facilitated the application of the algorithm. On the other hand, when 
the optimal trajectory is approximately linear, it turns out that the corresponding values of 61 are close 
to unity; the control problem becomes degenerate. The round-off errors arising in that case obstruct 
normal operation of the program. These difficulties may be overcome in various ways. First, one can 
apply linear interpolation of the graphs c*(o), since the required value of o is finite. Second, one can 
use the exact solution for the case of motion along a straight line, as described in Section 5. 

4. DETERMINATION OF THE SOLUTION OF 
THE OPTIMAL CONTROL PROBLEM 

After the optimal value of w = o(l, h, c) and the corresponding value of p = + 1 (p = p(I, h, c)) had 
been found for each fixed choice of I, h and c, the following parameters were computed using the explicit 
analytical formulae 

t, =~~(f,h,c), p=l.l(I,h,c), o=o(l,h,c) (4.1) 

where ff is the minimum root of system (3.1) (the response time) and p and o are the corresponding 
auxiliary parameters. This also determines the values of the scalar coefficients a,,, “(1, h, c) and 
b,, .(I, h, c) in the block-diagonal system of equations (2.5) for the unit vectors rl and v, which is non- 
degenerate in the general position [3]. Solving this system we obtain the required block-diagonal 
expressions for these vectors in terms of the vectors x0 and V’ 

n = (-x’t,b,p + v’(t;a,u + p))A-’ 

v = (x”r,6,, - vO+,)A-’ (4.2) 

A = r,b,,(+,p + l3, - +,b,p # 0 

The coefficients of the known n-vectors x0 and 4, are non-linear functions of these vectors, 
determined numerically from the values 1 = (x0), h = Iv”l, c = (x0, II’). Substitution of the unit 
vectors TJ and v from (4.2) into the expression (2.1) for u* yields an n-dimensional time-optimal open- 
loop control up 

k, = (I q I A)-’ WV, + b,t), I q I= Q(r, I, h,c) (4.3) 

Ic = -(I 4 I A)-’ (r,(a,t/ + a,,?)~ + b>, A = A(/, h, c) 

The optimal response time ff and the parameter l3 are determined by the three quantities 1, h and c, 
using formulae (4.1) and the results of Section 3. Note that the values p = k 1 correspond to the situations 
in which the “landing” takes place from the inside or the outside, respectively [4]. The corresponding 
motions may involve no intersections of the sphere, or one or two intersections (see below). The function 
Q in (4.3) is determined using formula (2.1) and the quantities tr, u and IS just found. Substitution of 
the vector-function up from (4.3) into Eqs (2.1) and integration with respect to t yield the trajectory, 
which may be found analytically in the form of (2.2), (2.3), all the constants tf, CL, cs and TJ being defined 
in terms of the known vectors x0 and 4. On the basis of these parameters, various characteristics of 
the optimal trajectory may be computed; in particular, at t = tf the angle y between the tangent to the 
trajectory and the normal to the surface is determined by the expression 

cosy = -(u, XI,, = -pco - p)( I - 2ol.l+ u9-x 

Thus, we have completely constructed a solution of the problem of the time-optimal open-loop control 
steering of a point mass from an arbitrary initial state to a sphere in n-dimensional (n 2 2) space at 
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zero velocity, by a bounded force. The degenerate case n = 1 (or the case of motion along a straight 
line) will be investigated below, in Section 5. 

The above algorithm may be used to construct a feedback time-optimal control u,(x, u) and the 
Bellman function T(x, u) (see Section 1). To that end, let us assume that the measurements of phase 
variables and the computations described in Section 3 may be carried out in practice at each 
instant of time with sufficient speed, or that it is possible to store and approximate functions of three 
variables over a sufficiently wide range of measurement. Then a feedback control u, and function T 
are defined by 

u,(x, v) = -k,,(f.h,c)x -k,,(l,h,c)u 

T(x,V)=t,(I,h,C), 1=1x1, h=lul, c=(x,u) (4.4) 

k,,(I.h,C)=k,(O,I,h,C), &(l,h,c)=~(O,I,h,c) 

The scalar factors k,, and k, in (4.4) have the meaning of feedback coefficients with respect to the 
position x and velocity u, respectively. Interestingly, the feedback coefficient matrices are diagonal 
(proportional to identity matrices). Unlike the case of steering a point to the origin [3], these coefficients, 
as well as the feedback coefficients with respect to the unit vectors xl1 and u”I, depend on the three 
variables 1, h and c. This makes their numerical-graphical representation, and the construction of a 
complete picture of the synthesis, difficult. The feedback control and the corresponding trajectories 
may be represented as an effective computational procedure (see below, Section 6, for computation 
results and comments). We also note that the Bellman function T(x, u), defined as a solution of the 
Cauchy problem (1.3) or (1.4), and the corresponding optimal feedback control us(x, u), are computed 
after finding the optimal root of a system of transcendental algebraic equations and unit vectors (4.2). 

5. TIME-OPTIMAL CONTROL IN MOTION ALONG A STRAIGHT LINE 

In the critical case, when the optimal control and all the basic relations are degenerate, separate 
consideration is necessary. As observed, when n L 2 one obtains one-dimensional motion if, at some 
time to, say to = 0, at least one of the following equalities holds 

X0 = 0, u” = 0, (X0, “0) =flOhO (5.1) 

Obviously, if n = 1 the last equality of (5.1) is true, namely, (x0, u”) = *loho. If 101 = 1, the vectors 
rl and v are collinear, and consequently the control vector is collinear with the same straight line at all 
times. It follows from the transversality condition that this straight line passes through the origin. If 
the initial velocity vector is not collinear with that line, it can never be made to vanish. Thus, the condition 
cr = 1 implies one-dimensional motion. The case u = 0 has exactly the same implication. 

Thus, let us consider the corresponding time-optimal problem for the one-dimensional system 

x = u, D= u, lu) s I, x(0)=x0, u(O)= u” (5.2) 
I X(t,) I= I, u (t I ) = 0, t + min f u 

where x, u and u are scalar variables. According to (5.2), it is required to steer the system from an arbitrary 
phase point (x0, 4) to the point (+l, 0) or (-1, 0) in a minimum time 9. It is fairly easy to solve this 
problem using the maximum principle. 

The phase plane (x, u) is divided by an antisymmetric curve (separatrix) into two parts P,i (Fig. 1) , 

x=-V(I+(U/2)*)%~d(V), P+, =(x,u: xSd(u)) (5.3) 

In the unbounded domains Pkl the optimal control u ?I steers the system from a phase point (x, u) 
to the state (+ LO), respectively. The control switching curves have the standard form (Fig. 1) 

L 21 =(x,u: x+I=j/~IU(u,(x,u)EP~,) (5.4) 

It may be shown by simple estimates that the separatrixx = d(u) in (5.3) lies wholly in the region 
between the switching curves L,, of (5.4) and approaches L,, as symptotically as u-+ - = and L_* as 
u+m.EachcurveL +i consists of two half-branches Lz,, I?~, which reach the points (+l, 0) when 
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Fig. 1 

u+1 = f 1, U_* = + 1, respectively. The optimal control in each domain P+i changes sign once when 
the system reaches the phase curve L,i. The optimal phase trajectory remains in the domain Pkl, that 
is, it never intersects the curve x = d(u). The optimal time fr = T+i is determined by the formulae 

T+,(x,u)=fv+2 *(x-l)++2 ( 1 

y2 
, (X,tJ)EP+,,X-1e-- ;lVlU (5.5) 

T,(x,u)=+u+2 k(x+l)+;“2 
c ) 

x 
9 (.hU)Ee,,x-l dl IJIV 

On the separatrixx = d(u) the functions T+, and T_, of (5.5) have the same values 

T,,(d(u),U)=Td(U)=-U+2 -d(u)+l+;v2 i ) yz = 

1 

=u+2 d(u)+l+2u 
( 2 

) 

1/2 2% , ,r=d(V)=-- 

( 01 

I+ 4 

(5.6) 

Thus, if the phase point D is on the separatrix, the time-optimal problem has not one but two solutions 
(see Fig. 1). The point will move either to (+l, 0) or to (-LO); the time will be determined by (5.6). 

Thus, optimal behaviour of the system, optimal control and optimal time for the one-dimensional 
problem are completely determined (see Fig. 1). By analogy with the standard approach, one can 
construct an open-loop control and trajectory of the optimal motion. The set of points of singular control 
has been described (the solution of the problem is not unique). Construction of the singular set in the 
general case of a two-dimensional system (n = 2) would be interesting. 

6. RESULTS OF A MATHEMATICAL SIMULATION AND CONCLUSIONS 

Whether computations of optimal control and motion utilizing the methods of Section 4 are efficient 
depends on the solution of various problems for a wide range of initial values of the two-dimensional 
vectors x0 and v*. Theoretically speaking, one is naturally interested in situations in which the initial 
point x0 = (~7, xi) is near the circumference (I = 1) or on it (I = 1). Important cases from the applied 
standpoint are those in which the initial point is far from the circle (I * 1) or near the origin 
(0 < 1 G 1). Of course, the shape of the optimal trajectories and the control law will depend essentially 
on the parameters h = 1 v*[ and c = (x , v*) 
loss of generality that x02 = 0, that is, 1 = Ix: 1. 

= Ih cos a. As already noted, we may assume without 
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It would be difficult to describe the set of control modes with exhaustive completeness. We will 
therefore discuss in detail some typical situations, as illustrated in Figs 2-6 (trajectories) and 7-10 
(controls and velocities). 

In Fig. 2 we show two families of trajectories, l-3 and 4-6, the main difference between which is 
that the ray of the initial velocity vector intersects the disk for the first family (a = 160”) but not for 
the second (a = -150”). The starting points are also spaced apart, xy = 2 and xy = 3, though with the 
same initial coordinate xi = 0; the velocities illustrated are h = 2.5, 1.1, 1.5,1,2, 3. Depending on the 
value of h, the circumference may be intersected either once (curve 2), twice (curve l), or not at all 
(all the other curves). In addition, the trajectories described are either relatively simple ones “in 
decelerating mode” (curves 2-5 in Fig. 2; see also Fig. 7, in which the controls u1,2 and velocities q2 
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Fig. 5 

Fig. 6 

are shown), or “with re-entry” (curves 1,6). In Fig. 8 we show the controls and velocities corresponding 
to curve 6 in Fig. 2, for which xy = 3, h = 3, a = -150”. “Re-entry” trajectories are accompanied by 
pronounced intermediate intervals of motion at low velocity (“reversal” in curve 6 and the associated 
low-velocity region in Fig. 8), and by “control switching” (Fig. 8). The optimal times fr for trajectories 
l-6 are as follows: 

rf = 3.58, 2.21, 1.50, 2.25, 2.20, 5.06 
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Fig. 7 

Fig. 8 

For trajectories with re-entry, tf varies more rapidly as h increases than in the case of motion “in 
decelerating mode”. 

Similar comments relate to the trajectories and control modes shown in Fig. 3, which again contains 
two families of curves, l-3 and 4-9. Here all trajectories involve “re-entry.” Curves l-3 correspond to 
r: = 2, h = 2.5, a = 135”, 9O”, 45”. Trajectories 4-9 begin on the boundary of the disk at a velocity 
h = 2.5 and different angles 

a = -lo’, -4O”, -7O”, -llo”, -140”, -170” 

Clearly, trajectories l-6 do not intersect the disk, while 7-9 do so; these properties are due to the 
direction and magnitude of the velocity. All landings on the circumference take place from the outside. 
The times tf for curves l-9 are as follows: 

tf = 4.36,5.56, 6.31, 4.82, 4.68, 4.38, 3.73, 3.07,2.29 

Examples of trajectories of the most pronounced “re-entry” type are curves 3-5. Besides the “limiting” 
control modes illustrated in Figs 7 and 8, “intermediate” modes may also appear (Fig. 9). 

Figure 4 illustrates a family of trajectories l-6 for velocity h = 1, less than that for curves 4-9 in 
Fig. 3. Trajectories 4-6, which do not intersect the circumference, are qualitatively similar to curves 
1-9 of the “re-entry” type in Fig. 3. Trajectories l-3, which “land” inside the disk, may be associated 
with motions “in decelerating mode,” see curves 2-5 in Fig. 2 (cf. Also trajectories 3-5 in Fig. 5 and 
the curves in Fig. 6). The optimal times tf for trajectories l-6 are 
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Fig. 9 

Fig. 10 

rf = 1.91, 1.37, 1.01, 1.67, 2.19, 2.40 

It is noteworthy that the optimal time is not a monotone function of the initial angle of inclination of 
the velocity vector. 

It has also been observed that the non-degeneracy property, valid at t = 0, remains valid for 
O<t<tf. 

In Fig. 5 we show two families of curves for which the velocity vector at the starting time t = 0 is 
orthogonal to thex, axis, that is, a = 90”. For the first family (curves l-5)$ = 0.8; for the second (curves 
6 and 7) xi = 1. In both cases the parameter of the family is the value of the velocity h. For the first 
family it takes the values h = 1.3, 1.101, 1.0910,0.7,0.1, and for the second, h = 1.5, 1. It is interesting 
to note that, for the first family, a critical value h’ = 1.1 exists at which the decelerating mode (see 
curve 3) becomes a re-entry mode (see curve 2) and the “landing” takes place from the outside. All 
the curves remain inside the disk at 0 c h < h”, intersecting the boundary at h > h’. The optimal response 
times for curves l-7 are, respectively 

tr= 1.67, 1.10, 1.09, 0.91, 0.89,2.60, 1.13 

It should also be noted that the optimal time for curves of the first family is not a monotone function 
of the velocity. It first somewhat decreases as h increases; for example, at h = 0.1 the time is tf= 0.89, 
while at h = 0.4 it is ff = 0.88. For h & 0.5 the optimal time begins to increase, e.g., ff = 0.91 at h = 0.7 
and ff = 1.09 at h = 1.09. 

In Fig. 6 we show a family of trajectories (curves l-7) for which h = 1, c1 = W, V! = 0, vi = 1, while 
the value of ~7 varies in the range 0 < ~7 c 1. Curve 1 corresponds to X! = 0.001 and curve 7 to 
X: = 0.99; trajectories 2-6 begin atx 7 = 0 1 0 3 0.5,0.7,0.9. All the control modes in Fig. 6 correspond 
to “deceleration”. In a strict sense, motion v&h deceleration takes place at x7 = 0. However, already 
at xy = 0.001 there is a short initial interval (b = 0.25) of acceleration (~2 = 1, u1 = 0) along the x2 axis, 
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followed by a decelerating section (~2 = -1, u1 = 0). At xy = 0.1 prve 2) there is a short initial interval 
Ar = 0.25 in which the control u2 varies almost as in the case of xi = 0.001 (u2 is slightly less in absolute 
value); the control u1 is non-zero and produces a marked shift of the endpoint of the trajectory to the 
right. It is interesting to observe the behaviour of curve 7 near the boundary of the disk: the optimal 
trajectory intersects the circumference and landing take place from the outside. Curves 1-7 correspond 
to the following response times 

tf= 1.45, 1.44, 1.37, 1.24, 1.09, 1.01; 1.11 

The following interesting fact should be noted: as the value of xy approaches the right endpoint of 
the interval [0, 11, the optimal time decreases relatively quickly dwhich seems natural) but then increases, 
which is not at all obvious. This property of the dependence onx 1 is analogous to the property considered 
above, of the dependence on h for trajectories l-5 in Fig. 5. The fairly common failure of the optimal 
time to be a monotone function of the parameters is, of course, aggravated by the fact that the terminal 
set is not a point but a circle. 

Thus, the computational results presented above indicate the high efficacy of the algorithm proposed 
for constructing time-optimal modes of motion in solving a model problem concerning the most rapid 
soft landing of an object, driven by a bounded force, on a sphere. Investigation of the optimal trajectories 
yields several interesting qualitative properties of the controlled motions, as observed above. 

This research was supported financial by the Russian Foundation for Basic Research (02-01-00157, 
02-01-00201). 
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